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Bone morphogenetic protein(s) (BMP) are very power-
ful cytokines that induce bone and cartilage formation.
BMP also stimulate osteoblast and chondrocyte differ-
entiation. During bone and cartilage development,
BMP regulates the expression and/or the function of
several transcription factors through activation of
Smad signalling. Genetic studies revealed that Runx2,
Osterix and Sox9, all of which function downstream of
BMP, play essential roles in bone and/or cartilage de-
velopment. In addition, two other transcription factors,
Msx2 and Dlx5, which interact with BMP signalling,
are involved in bone and cartilage development. The
importance of these transcription factors in bone and
cartilage development has been supported by biochem-
ical and cell biological studies. Interestingly, BMP is
regulated by several negative feedback systems that
appear necessary for fine-tuning of bone and cartilage
development induced by BMP. Thus, BMP harmoni-
ously regulates bone and cartilage development by
forming network with several transcription factors.
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In mammals, bone is formed in two fundamentally
different ways: membranous ossification or endochon-
dral ossification (1�4). During membranous ossifica-
tion, multipotent undifferentiated mesenchymal cells
sequentially differentiate into preosteoblasts, osteo-
blasts and osteocytes, which form bone tissue (2, 4).
In contrast, endochondral ossification is apparently
more complex than membranous ossification. During
endochondral ossification, multipotent undifferenti-
ated mesenchymal cells differentiate into proliferative
chondrocytes, prehypertrophic chondrocytes and
hypertrophic chondrocytes; subsequently, the cartilage
tissues formed by these chondrocytes are replaced by

bone tissues (1, 5). Bone morphogenetic protein(s)
(BMP), especially BMP2 and BMP4, are very powerful
growth factors that induce bone and cartilage forma-
tion by stimulating osteoblast differentiation and
chondrocyte differentiation (4). Smad signalling plays
a central role in BMP signalling; the details of
BMP�Smad signalling are described in excellent litera-
tures (6�9). As expected, BMP receptors are required
for bone development (10). Furthermore, BMP-
regulated R-Smad, Smad1, Smad5 and Smad8, and
co-Smad, Smad4, all play critical roles as transcrip-
tional regulators in osteoblastogenesis and chondro-
genesis (11�13). However, the Smad proteins and
BMP receptors are ubiquitously expressed in several
tissues; therefore, it is difficult to conceive of regula-
tory models for osteoblastogenesis and chondrogenesis
that involve only BMP�Smad signalling. Genetic evi-
dence and biochemical studies indicate that several
transcription factors, including Runx2, Osterix,
Msx2, Dlx5/6 and Sox9, are essential for osteoblasto-
genesis and chondrogenesis (4). Importantly, expres-
sion and/or function of these transcription factors
are controlled by BMP-Smad signalling. In this
review, we describe recent advances in our understand-
ing of the network formed by BMP and Smad signal-
ling components and several transcription factors.

Partnership between BMP�Smad
Signalling and Runx2 during Osteoblast
Differentiation

Runx2 (also called Cbfa1, Pepb2a1 or AML3) is an
essential transcription factor, which belongs to the
Runx family, for bone formation and osteoblast differ-
entiation as described in the followings (3). Mutations
in the human RUNX2 gene cause cleidocranial dyspla-
sia, which is characterized by impairment of bone for-
mation in calvariae and clavicle (14). The Runx2
knockout mice show no bone formation and osteoblas-
togenesis (15, 16). Furthermore, Runx2 has been iden-
tified as a transcription factor that binds to the
osteoblast-specific element 2 (OSE2) present in the
promoter of the osteocalcin gene (17). In addition,
overexpression of Runx2 in multipotent mesenchymal
cells induces osteoblast differentiation in vitro (18).
These findings indicate that Runx2 may interact with
BMP�Smad signalling because Smad proteins func-
tion in nuclei, and as expected, Runx2 expression is
up-regulated by activation of BMP�Smad signalling
(18, 19). Moreover, Runx2 can physically associate
with activated Smad1 and Smad5 and to cooperatively
stimulate osteoblast differentiation with Smad1 and
Smad5 (18, 20). An interaction between Runx2 and
Smad protein is involved in pathogenesis of F
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cleidocranial dysplasia (21). Collectively, activation of
BMP�Smad signalling stimulates bone formation and
osteoblastogenesis via up-regulating both the
expression and the function of Runx2. C/EBPb, a tran-
scription factor critical for the initial step in adipocyte
differentiation, has been identified as one of the
co-activators for Runx2 during osteoblast differenti-
ation (22). In addition, expression of C/EBPb was
up-regulated by BMP2 treatment (22). Interestingly,
LIP, an isoform of C/EBPb that lacks the transcrip-
tional activation domain, appears to function as a
switching regulator between osteoblastogenesis and
adipogenesis (22). In contrast, CHOP, another
member of the C/EBP transcription factor family, is
up-regulated by BMP2 and inhibits osteoblastogenesis
in a dominant negative fashion (23). Thus,
BMP�Smad signalling controls osteoblast differenti-
ation through Runx2 via several mechanisms (Fig. 1).

Regulation of Osteoblast Differentiation
by Osterix

A Sp1 family member, Osterix (also called Sp7), was
identified as a BMP2-specific transcription factor fol-
lowing the discovery of the essential role of Runx2 in
bone formation (24). Importantly, Osterix knockout
mice showed severe impairment of bone formation
and osteoblastogenesis (24), indicating that Osterix
is also an essential transcription factor for bone
development. Interestingly, Runx2 expression was
up-regulated in Osterix knockout mice, but no expres-
sion of Osterix in Runx2 knockout mice (25); taken
together, these finding indicate that Runx2 acts
up-stream of Osterix. This scenario was confirmed by
the observation that overexpression of Runx2 induces
Osterix expression (25). In addition, Smad signalling is
necessary for induction of Osterix by BMP2 (25).
However, Msx2, a homeobox family member, is
involved in regulation of Osterix expression, at least
in vitro, because BMP2 treatment or Msx2 overexpres-
sion increased Osterix expression in mesenchymal cells
isolated from Runx2 knockout mice (25). Therefore,
regulation of Osterix expression during osteoblast dif-
ferentiation is apparently complex (Fig. 2). Runx2 and
Osterix seem to share a particular osteogenic function
because both up-regulate expression of the same

osteoblast marker genes (e.g. osteocalcin and Bsp).
However, Runx2 and Osterix also up-regulate different
osteoblastogenic genes (25). Therefore, it is likely that
Runx2 and Osterix have both common and distinct
functions during osteoblast differentiation (Fig. 2).

Role of other BMP2-Regulated Transcription
Factors in Osteoblast Differentiation

Several transcription factors other than Runx2 and
Osterix are regulated by BMP2 and are involved in
osteoblast differentiation. Msx2 expression is a
marker of the early response to BMP2 activity.
Initially, Msx2 was thought to be a repressor and in-
hibitory regulator of osteoblast differentiation,
because some data indicated that Msx2 inhibited activ-
ity of the osteocalcin gene promoter (26, 27). However,
subsequent in vivo genetic studies refuted these conclu-
sions. First, bone formation was dramatically inhibited
in Msx2 knockout mice (28). Secondly, functional hap-
loinsufficiency of the human MSX2 causes defects in
skull ossification (29). Likewise, mutations in the
MSX2 gene were identified in the patients with fora-
mina parietalia permagna (30). Moreover, overexpres-
sion of Msx2 consistently stimulates osteoblast
differentiation of mesenchymal cells in vitro (31, 32).
As described above, Msx2 is also implicated in
up-regulation of Osterix expression (25, 31). Thus,
Msx2 is an important transcriptional regulator of
bone development. Interestingly, Msx2 may function
as a regulator, which defines the balance between
osteoblastogenesis and adipogenesis (31, 32). The
inhibitory role of Msx2 in adipogenesis has been
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shown in vivo (33). Although, the precise molecular
mechanisms that cause Msx2 to have reciprocal roles
in osteoblast differentiation and adipocyte differenti-
ation are still unclear, Msx2 might function in the early
stage of mesenchymal cell differentiation in response to
BMP2.

A Dlx family homeobox gene, Dlx5, is also
up-regulated by BMP2 treatment (4). Dlx5 knockout
mice have impaired skeletal development and particu-
larly impaired craniofacial development. Among the
Dlx family genes, Dlx6 shows the highest similarity
to Dlx5. Dlx6 knockout mice, like Dlx5 knockout
mice (34), have abnormalities in skeletogenesis
(35, 36). Of note, double knockout mice of Dlx5 and
Dlx6 showed more severe impairment of bone devel-
opment than the single knockout mice of the each (35).
Interestingly, the Dlx5 and Dlx6 genes are linked and
reside at the same locus and form a bigene cluster; it is
likely that expression of Dlx5 and Dlx6 is regulated by
the same or similar mechanisms. Thus, the transcrip-
tion factors Dlx5 and Dlx6 mediate the osteogenic role
of BMP.

Negative Feedback Regulation Involving
BMP during Osteoblast Differentiation

An inhibitory Smad, Smad6, is up-regulated following
BMP2 stimulation (37). As expected, overexpression of
Smad6 markedly inhibited osteoblastogenic function
of BMP2 (18). This finding indicates that BMP may
prevent excessive osteoblast differentiation by control-
ling Smad6 expression. In addition to a central nega-
tive feedback mechanism that involves Smad6, BMP
signalling appears to have additional effects that fine
tune osteoblastogenesis. For example, a HECT-type
E3 ubiquitin ligase, Smurf1, plays a major role in reg-
ulating the expression levels of R-Smad proteins
through its association with Smad1, Smad5 and pre-
sumably Smad8 (38). Furthermore, Smurf1 is involved
in the degradation of the BMP receptor and Runx2
(38, 39). Interestingly, a report indicated that Smurf1
regulates osteoblastogenic activity and bone volume
via MEKK2 (40). Smad6 is involved in the degrad-
ation of Smad proteins and BMP receptors by
Smurf1 (38, 41). Tob, an antiproliferative protein,
can inhibit osteoblastogenesis and bone formation
through physical interaction with BMP regulated
R-Smad (42). Tob knockout mice consistently exhibit
higher bone volumes than wild-type mice (42).
Therefore, it is likely that Tob is an important negative
regulator in BMP-dependent bone formation. Hey1,
which mediates Notch signalling, is also up-regulated
by BMP2 in mesenchymal cells and osteoblasts
(43, 44). Hey1 inhibits osteoblast differentiation by
suppressing Runx2 activity (43, 45), indicating that a
BMP�Hey1 loop also functions in a negative feedback
system that tempers the osteoblastogenic action of
BMP2. Because SnoN and c-Ski form a complex
with Smad and recruits N-CoR and/or HDAC
(46�49), these factors may participate in the negative
regulation of BMP-mediated osteoblast development.

Although it is still unknown how these systems of
negative feedback regulation integrate with the
larger BMP-related network during osteoblast differ-
entiation, this regulation would be necessary for
harmonious regulation of BMP-mediated bone
formation.

Role of TGF-b Signalling in Osteoblast
Differentiation

TGF-b is a very abundant protein in bone; conse-
quently, several investigators have been interested in
the role of TGF-b in osteoblast differentiation.
Furthermore, BMP belongs to the TGF-b family
(6, 50, 51), which is reported to stimulate osteoblast
differentiation (52). Moreover, TGF-b-regulated
R-Smad, Smad3 was reported to play a role in osteo-
blast differentiation (53). However, the role of TGF-b
and Smad3 in osteoblastogenesis has been getting con-
troversial. TGF-b strongly inhibits osteoblast differen-
tiation of mesenchymal cells (54), and treatment with
TGF-b inhibitor dramatically stimulates osteoblast
differentiation (54, 55). Finally, Smad3 clearly associ-
ates with Runx2 to block the osteoblastogenic action
of Runx2 (56). At the present time, we conclude that
TGF-b has inhibitory effects on osteoblast differenti-
ation. Recently, it has been shown that TGF-b recruits
mesenchymal cells to bone remodelling regions (57). In
addition, a novel paradigm indicates that TGF-b
stimulates the association of TGF-b receptor complex
with the parathyroid hormone (PTH) receptor, and
phosphorylation of the PTH receptor has been re-
ported (58). These studies seem very interesting and
attractive; however, it may be necessary to confirm
these findings using other appropriate experimental
systems, because the role of TGF-b in bone metabol-
ism is still elusive.

Molecular Mechanisms of Regulation of
Endochondral Ossification by Sox9

As described above, BMP plays an important role in
cartilage development and chondrocyte differentiation
(1, 4, 41). Genetic studies indicate that Sox9 is a tran-
scription factor that is essential for chondrogenesis.
Mutations of the SOX9 genes lead to Campomeric
dysplasia, which is characterized by severe chondro-
dysplasia and sex reversal (59, 60). Conditional Sox9
knockout mice in chondrocyte lineage show no chon-
drogenesis (61). In addition, Sox9 has been shown to
directly regulate chondrogenic genes, such as Col2a1,
Col11a2 and aggrecan (4). Although BMP-mediated
regulation of Sox9 expression has not been demon-
strated yet, we observed that BMP2 markedly stimu-
lated Sox9 expression in mouse limb bud cells
(R. Nishimura, unpublished results). Therefore, it is
likely that BMP controls chondrogenesis through
Sox9. Sox9 is also necessary for induction of Sox5
and Sox6 (61, 62). Mice lacking both Sox5 and Sox6
exhibit severe impairment of chondrogenesis (63). In
addition, overexpression of Sox9, Sox5 and Sox6
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together induces chondrocyte differentiation more ef-
ficiently than overexpression of Sox9 alone (62, 64).
Thus, Sox9 controls chondrocyte development in co-
operation with Sox5 and Sox6. We were interested in
identifying transcriptional partners of Sox9 and/or
up-stream regulators of Sox9. Therefore, we developed
a mammalian expression cloning system using a
Col2a1 gene luciferase construct to identify such fac-
tors and isolated TRPV4 (65), which is up-stream of
Sox9. Genetic studies confirm that our cloning system
was very powerful and useful, because mutations in the
TRPV4 gene cause genetic conditions that are accom-
panied by chondrodysplasia (66, 67). Using this
system, we identified several transcriptional partners
of Sox9; for example, p54nrb, a component of
para-speckled body, associates with Sox9 and stimu-
lates its transcriptional activity (68). Interestingly, a
p54nrb mutation inhibited Sox9-induced splicing of
Col2a1 mRNA and suppressed chondrogenesis
in vivo (68). Collectively, these data indicate that
p54nrb, as a partner of Sox9, links transcription to
splicing (68) (Fig. 3B). Znf219 and Arid5a, which
physically interact with each other, also associate and
co-localize with Sox9 (62, 69); however, they have a
nuclear localization pattern that is distinct from the
nuclear localization pattern of p54nrb (R. Nishimura,
unpublished results). These findings indicate that
Znf219 and Arid5a have a different function from
that of p54nrb. In fact, Arid5a-stimulated acetylation
of histone 3 around the Col2a1 gene promoter
region (69). Therefore, Znf219 and Arid5a seem to
be implicated in histone modification during Sox9-
mediated chondrogenesis (Fig. 3A). Taken together,
these findings indicate that Sox9 spatially and tempor-
ally regulates chondrogenesis by forming different
transcriptional complexes at distinct stages (Fig. 3).

Role of Sox9 in the Late Stage of
Chondrogenesis

As described above, Sox9 is essential for chondrogen-
esis, especially in the early stages, including during
condensation of mesenchymal cells and differentiation
of mesenchymal cells into chondrocytes. However,
Sox9 can apparently inhibit late stages of chondrogen-
esis; for example, overexpression of Sox9 induces
PTH-related protein (PTHrP), which inhibits matur-
ation of chondrocytes, and Sox9 inhibits hypertrophic
conversion of chondrocytes (70). Interestingly, treat-
ment with a neutralizing anti-PTHrP antibody restores
hypertrophic conversion by Sox9 in metatarsal bone
cultures (70). These results indicate that Sox9 inhibits
late stages of chondrogenesis by up-regulating PTHrP.
It is well known that Indian hedgehog (Ihh) stimulates
PTHrP expression; therefore, the relationship between
Sox9 and Ihh signalling was investigated. Notably,
Sox9 associates with Gli2, a mediator of Ihh,
and Sox9 and Gli2 co-operatively stimulate PTHrP
expression and PTHrP gene promoter activity (70).
Sox9 has also been shown to inhibit late stages of
chondrogenesis by suppressing cartilage vasculariza-
tion in vivo (71). Thus, Sox9 negatively regulates the
late stages of chondrogenesis through multiple distinct
mechanisms.

Regulation of Chondrogenesis by other
Transcription Factors

Runx2 and Runx3 are necessary for hypertrophy of
chondrocytes because mice lacking both Runx2 and
Runx3 showed no hypertrophic conversion of chon-
drocytes (72). Runx2 expression is higher than
Runx3 expression, and a Runx2 deficiency in mice
results in a more severe cartilage defect than does a
Runx3 deficiency (72), Runx2 is likely to be more pre-
dominant for hypertrophy of cartilage than Runx3.
Interestingly, Runx2 has been shown to induce hyper-
trophy of chondrocytes in collaboration with Ihh (72).
To support this finding, Runx2 has been shown to
physically associate with Gli2 during osteoblast differ-
entiation (73). However, the idea seems inconsistent
with effect Ihh has on the induction of PTHrP,
which inhibits hypertrophic conversion of cartilage.
This apparent contradiction was resolved by experi-
ments in which treatment with Ihh-stimulated
hypertrophy and calcification of chondrocytes (74).
Overexpression of Msx2 also consistently stimulates
maturation of chondrocytes (74). In addition, cartilage
development seems to be reduced in Msx2 knockout
mice (28). Although the relationship between Msx2
and Runx2 is still unclear, the dual role of Ihh in chon-
drocytes differentiation might depend on the relative
dosages of Runx2 and Sox9, because Runx2 stimulates
and Sox9 inhibits maturation of chondrocytes.
Recently, we found that Osterix is expressed in the
prehypertrophic zones of growth plates and that, in
global and conditional Osterix knockout mice, chon-
drogenesis was totally blocked at the hypertrophic
stage and there was no evidence of calcification of
chondrogenic matrices or formation of matrix vesicles
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Fig. 3 Sox9 assembles distinct transcriptional complexes to regulate

chondrogenic target genes. (A) Arid5a and Znf219 are involved in the
histone modification step. (B) Paraspeckle protein, p54nrb, is neces-
sary for linking the transcription and splicing steps.
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(R. Nishimura, unpublished results). It is, therefore,
likely that a Sox9-Runx2/Runx3-Osterix axis is a cen-
tral transcriptional pathway in endochondral ossifica-
tion (Fig. 4).

Effects of Endoplasmic Reticulum Stress on
Bone and Cartilage Development

Accumulation of unfolded or misfolded proteins in the
endoplasmic reticulum (ER) is associated with gene
mutation, viral infection, inflammation or chemical
toxicity; this accumulation leads to ER stress, and sub-
sequently causes apoptosis of the cells. When cells ex-
perience ER stress, several ER sensors, including
IRE1, ATF6, Perk, Oasis and BBF2H7, all of which
are anchored in the membrane of the ER, are released
by membrane truncation, and subsequently respond to
the ER stress (75). Interestingly, truncated forms of
Oasis and BBF2H7 translocate to nuclei and function
as transcription factors. Moreover, Oasis and BBF2H7
are very critical for bone and cartilage development,
respectively (76, 77). In Oasis knockout mice, mis-
folded type I collagen protein accumulate to high
levels in the impaired ER (76). Importantly, the
Oasis knockout mice showed impaired osteogenesis
and a reduction in expression of type I collagen (76).
Biochemical experiments showed that Oasis regulates
Col1a1 expression via direct binding to the Col1a1
gene promoter (76). The phenotype seen in Oasis
knockout mice was almost rescued when knockout
mice were mated with transgenic mice overexpressing
Oasis (78). Therefore, Oasis might regulate bone devel-
opment, at least in part, by controlling Col1a1.
BBF2H7 knockout mice showed severe chondrodys-
plasia (77). Microarray experiments revealed that
Sec23 is a major target of BBF2H7 in chondrocytes
(77). As expected, introduction of Sec23, an important
chaperon protein for protein folding, rescued chondro-
cyte differentiation in BBF2H7-deficient cells (77).
Because bone and cartilage produce and secret large
amounts of bone and cartilage matrix components, re-
spectively, moderate and appropriate levels of ER
stress occur under normal developmental and physio-
logical conditions in osteoblasts and chondrocytes.
Thus, Oasis and BBF2H7 would be required for bal-
ance and maintenance of ER stress in bone and cartil-
age development, respectively.

Conclusion

In the last decade, our understanding of the molecular
mechanisms by which BMP regulate osteogenesis and
chondrogenesis via several critical transcription fac-
tors progressed substantially as the investigations
of BMP signalling advanced. In particular, genetic

investigations and biochemical studies have contribu-
ted to these advances. However, several important
issues have yet to be resolved. First, it is not yet clear
how BMP-related transcription factors interact with
one another to form the spatial�temporal network
that regulates bone and cartilage development.
Secondly, it is unknown which transcription factor(s)
is involved in the induction of Runx2 and Sox9 (Fig.
1). Thirdly, further understanding of transcriptional
complexes assembled by Runx2 and Osterix is neces-
sary. Last, the target genes that are regulated by
Runx2 and Osterix and that have essential roles in
bone formation have not been identified; however, al-
though the mechanisms by which Sox9 regulates the
target genes critical for endochondral ossification are
well established. We believe a better understanding of
these unresolved issues will contribute to the develop-
ment of BMP as therapeutic agents for treatment of
bone and cartilage diseases.
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growth factor Î2 on bone morphogenetic protein-induced
osteoblast differentiation. J. Bone Miner. Res. 26,
1178�1187

56. Kang, J.S., Alliston, T., Delston, R., and Derynck, R.
(2005) Repression of Runx2 function by TGF-beta
through recruitment of class II histone deacetylases by
Smad3. EMBO J. 24, 2543�2555

57. Tang, Y., Wu, X., Lei, W., Pang, L., Wan, C., Shi, Z.,
Zhao, L., Nagy, T.R., Peng, X., Hu, J., Feng, X., Van
Hul, W., Wan, M., and Cao, X. (2009) TGF-
beta1-induced migration of bone mesenchymal stem
cells couples bone resorption with formation. Nat.
Med. 15, 757�765

58. Qiu, T., Wu, X., Zhang, F., Clemens, T.L., Wan, M.,
and Cao, X. (2010) TGF-beta type II receptor phosphor-
ylates PTH receptor to integrate bone remodelling sig-
nalling. Nat. Cell Biol. 12, 224�234

59. Foster, J.W., Dominguez-Steglich, M.A., Guioli, S.,
Kwok, C., Weller, P.A., Stevanovic, M., Weissenbach,
J., Mansour, S., Young, I.D., and Goodfellow, P.N.
(1994) Campomelic dysplasia and autosomal sex reversal
caused by mutations in an SRY-related gene. Nature 372,
525�530

60. Wagner, T., Wirth, J., Meyer, J., Zabel, B., Held, M.,
Zimmer, J., Pasantes, J., Bricarelli, F.D., Keutel, J.,
Hustert, E., Wolf, U., Tommerup, N., Schempp, W.,
and Scherer, G. (1994) Autosomal sex reversal and cam-
pomelic dysplasia are caused by mutations in and around
the SRY-related gene SOX9. Cell 79, 1111�1120

Role of BMP-related signalling and transcription factors in bone

253



61. Akiyama, H., Chaboissier, M.C., Martin, J.F., Schedl,
A., and de Crombrugghe, B. (2002) The transcription
factor Sox9 has essential roles in successive steps of the
chondrocyte differentiation pathway and is required for
expression of Sox5 and Sox6. Genes Dev. 16, 2813�2828

62. Takigawa, Y., Hata, K., Muramatsu, S., Amano, K.,
Ono, K., Wakabayashi, M., Matsuda, A., Takada, K.,
Nishimura, R., and Yoneda, T. (2010) The transcription
factor Znf219 regulates chondrocyte differentiation by
assembling a transcription factory with Sox9. J. Cell
Sci. 123, 3780�3788

63. Smits, P., Dy, P., Mitra, S., and Lefebvre, V. (2004) Sox5
and Sox6 are needed to develop and maintain source,
columnar, and hypertrophic chondrocytes in the cartil-
age growth plate. J. Cell Biol 164, 747�758

64. Saito, T., Ikeda, T., Nakamura, K., Chung, U.I., and
Kawaguchi, H. (2007) S100A1 and S100B, transcrip-
tional targets of SOX trio, inhibit terminal differenti-
ation of chondrocytes. EMBO Rep. 8, 504�509

65. Muramatsu, S., Wakabayashi, M., Ohno, T., Amano,
K., Ooishi, R., Sugahara, T., Shiojiri, S., Tashiro, K.,
Suzuki, Y., Nishimura, R., Kuhara, S., Sugano, S.,
Yoneda, T., and Matsuda, A. (2007) Functional gene
screening system identified TRPV4 as a regulator of
chondrogenic differentiation. J. Biol. Chem. 282,
32158�32167

66. Rock, M.J., Prenen, J., Funari, V.A., Funari, T.L.,
Merriman, B., Nelson, S.F., Lachman, R.S., Wilcox,
W.R., Reyno, S., Quadrelli, R., Vaglio, A., Owsianik,
G., Janssens, A., Voets, T., Ikegawa, S., Nagai, T.,
Rimoin, D.L., Nilius, B., and Cohn, D.H. (2008)
Gain-of-function mutations in TRPV4 cause autosomal
dominant brachyolmia. Nat. Genet. 40, 999�1003

67. Nishimura, G., Dai, J., Lausch, E., Unger, S.,
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